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Abstract

The behaviour of weak laminar plane fountains that result from the injection of dense ¯uids upwards into a large
container of homogeneous ¯uid of lower density is studied numerically by using a time-accurate ®nite volume code.

The study is an extension of a previous numerical study on weak laminar axisymmetric fountains. Weak laminar
plane fountains with both a uniform and a parabolic pro®le of the discharge velocity at the source have been
investigated. The initial, temporary and ®nal characteristic fountain heights and the times for the fountain front to

reach these heights have been determined and scaled. At steady state, a height scale as well as a horizontal length
scale for the fountain width are determined. The vertical distribution of the vertical velocity and temperature on the
symmetry line are shown to scale with this height. The height and horizontal length scales have been used to scale

the horizontal variation of both the horizontal and the vertical velocity in the fountain core at steady state. 7 2000
Elsevier Science Ltd. All rights reserved.

1. Introduction

Whenever a dense ¯uid is injected vertically upward

into a miscible and less dense ¯uid a fountain forms.

The denser ¯uid penetrates to a ®nite height, where-

upon it stops, and falls back as a plunging plume

around the upward ¯ow. Surrounding ambient ¯uid is

constantly being entrained into the plunging plume,

while the inner rising jet can only entrain into the

outer plume ¯uid. The net result is that, as the injected

¯uid travels through the ambient ¯uid, its volumetric

¯ow rate increases and its mean density decreases.

Fountains also occur in the reverse case, when lighter

¯uid is injected vertically downward into a denser

ambient ¯uid.
For fountains with a relatively large discharge

momentum compared to the negative buoyancy

�Fr > 1:0, especially Fr� 1:0� and large Reynolds
numbers, the ¯ow becomes turbulent quite close to the
source. There have been many experimental, analytical
and numerical studies on turbulent fountains in the

past decades [1±16].
When the discharge momentum is less than the

negative buoyancy �Fr < 1:0� the streamlines curve and

spread from the source with no distinguishable strong
upward and downward ¯ow. These are denoted weak
fountains and are the subject of the present study.

Weak fountains occur in the replenishment of cold
water in solar ponds [17], in the melting of magna
chamber roofs [18] as well as many other environmen-
tal and industrial settings.

When Re is not too large, dimensional consistency
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requires that

Ym

X0
0Fr: �1�

where Fr is de®ned as:

Fr � V0

�X0s0 �1=2
: �2�

Recently a numerical investigation of the transient

behaviour of weak axisymmetric fountains in a homo-
geneous ¯uid has been carried out [19]. In that work,
the behaviour of weak axisymmetric fountains with

both a uniform and a parabolic pro®le of the discharge
velocity at the fountain source were investigated using
a time-accurate ®nite-volume code. The evolution of
the transient fountain ¯ow was analyzed and two dis-

tinct stages of evolution identi®ed. The time series of
the passage of the fountain front was presented and
the initial, temporary and ®nal characteristic fountain

heights determined and scaled. At steady state a hori-
zontal length scale which describes the fountain width
as well as a height scale, were obtained and together

were used to scale the axial and radial pro®les of vel-
ocity in the fountain core at steady state.
In this paper, the previous study of weak axisym-

metric fountains is extended, using the same procedure

[19], to investigate the behaviour of weak laminar
plane fountains issuing vertically into a quiescent
homogeneous ambient ¯uid. The main di�erences
between axisymmetric and plane fountains are that the

latter penetrate to a greater height, have a greater
spread and take longer to achieve a steady state.
Quantitative di�erences, such as the exact form of the

scaling relations, are detailed below. In Section 2, a
brief description of the numerical method used is intro-
duced. Numerical results for Fr � 1:0 are presented in

Section 3 to provide a qualitative description of the
¯ow. Time series of the passage of the fountain front
are then presented to determine the characteristic
length scales. In Section 4, the velocity and tempera-

ture distributions are analyzed and scaled. Finally, the
main conclusions are summarized in Section 5.

2. Numerical method

2.1. Governing equations

The physical domain consists of a container of
height H and width 2L with non-slip insulated side-
walls and open top. A slot of width 2X0 is located at

Nomenclature

a0, a1 Constants
Fr Froude number
H, L Dimensional height and half-width of

container
p, P Nondimensionalized and dimensional

pressure

Pr Prandtl number
R Regression coe�cient
Re Reynolds number

t Dimensional time
T Dimensional temperature
T0, Ta Dimensional temperature at source and

at ambient

u, U Nondimensionalized and dimensional
x-velocity

v, V Nondimensionalized and dimensional

y-velocity
V0 Dimensional mean momentum

weighted discharge velocity at source

Vm Dimensional maximum discharge vel-
ocity at source

x, X Nondimensionalized and dimensional

horizontal coordinate
xw Nondimensionalized fountain width

X0 Dimensional half-width of the source
slot

y, Y Nondimensionalized and dimensional

vertical coordinate
ym, Ym Nondimensionalized and dimensional

fountain height

ymf , ymi, ymt Nondimensionalized ®nal, initial, tem-
porary fountain height

Greek symbols
y Nondimensionalized temperature
k Thermal conductivity
n Kinematic viscosity

r Density
s0 Reduced gravity between fountain and

ambient

t Nondimensionalized time
tm Nondimensionalized time for the foun-

tain front to reach ym

tmf , tmi, tmt Nondimensional time to reach
ymf , ymi, ymt

Dxw, Dyw Nondimensionalized ®rst grid size in x-

and y-direction
Dt Nondimensionalized time step
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the centre of the bottom, forming the fountain source,
while the rest of the bottom is insulated and non-slip.

The ¯uid is initially isothermal and quiescent at tem-
perature Ta: A stream of ¯uid at T0 < Ta is impulsively
injected into the container at the source, starting at

time t � 0, and maintained thereafter. It is assumed
that the length of the container is long enough so that
two dimensional ¯ow may be assumed. The ¯ow is

assumed to be laminar, two dimensional and symmetri-
cal, allowing the computational domain sketched in
Fig. 1 to be used.

Both parabolic and uniform source pro®les have
been used. The parabolic pro®le is de®ned as

V�X, 0� � Vm

"
1ÿ

�
X

X0

� 2
#

for 0RXRX0, �3�

while the uniform velocity pro®le is V�X, 0� � V0 for
0RXRX0: The uniform and parabolic pro®les have
the same momentum ¯ux when Vm �

����������
15=8
p

V0 and
are then considered comparable. The mean momentum

weighted discharge velocity for the parabolic pro®le is
de®ned to be V0 � Vm=

����������
15=8
p

, and therefore the uni-
form and parabolic fountains will have the same

Froude number when their momentum ¯uxes are
equal.
The ¯ow is described by the Navier±Stokes

equations and the temperature equation, with the

Boussinesq assumption allowing their incompressible
forms to be used. The equations are written in conser-

vative, non-dimensional form in Cartesian coordinates
as follows:

@u

@x
� @v
@y
� 0, �4�

@u

@t
� @ �uu�

@x
� @ �vu�

@y
� ÿ @p

@x
� 1

Re

 
@ 2u

@x 2
� @

2u

@y 2

!
, �5�

@v

@t
� @ �uv�

@x
� @ �vv�

@y

� ÿ@p
@y
� 1

Re

 
@ 2v

@x 2
� @

2v

@y 2

!
� 1

Fr 2
y, �6�

@y
@t
� @ �uy�

@x
� @ �vy�

@y
� 1

RePr

 
@ 2y
@x 2
� @

2y
@y 2

!
, �7�

with Re and Pr de®ned respectively as follows:

Re � V0X0

n
, Pr � n

k
: �8�

The following nondimensionalization is used:

x � X

X0
, y � Y

X0
, u � U

V0
, v � V

V0
,

t � t

�X0=V0 � , p � P

rV 2
0

, y � Tÿ Ta

T0 ÿ Ta

,

�9�

nondimensionalizationwith initial and boundary con-
ditions,

u � v � 0, y � 0, at all x, y and t < 0; �10�

and

u � 0,
@v

@x
� 0,

@y
@x
� 0 on x � 0, 0RyRH=X0;

u � v � 0,
@y
@x
� 0, on x � L=X0, 0RyRH=X0;

u � 0, v � v�x, 0�, y � ÿ1 on 0RxR1, y � 0;

u � v � 0,
@y
@y
� 0, on 1 < xRL=x 0, y � 0;

Fig. 1. Computational domain and coordinate system.
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@u

@y
� @v

@y
� @y
@y
� 0 on 0RxRL=X0,

y � H=X0, tr0:

�11�

In this study, H has been chosen to be large enough

with respect to X0 �H=X0 � 15� so that the upper �y �
H=X0� boundary has little in¯uence on the fountain
¯ow and the assumption of parallel ¯ow conditions at
the upper boundary in Eq. (11) is appropriate. Unless

otherwise speci®ed Pr � 7, Re � 200 and H � L �
15X0 are used in all the numerical simulations in this
study.

2.2. Discretization and time integration

The mesh concentrates points in the fountain region
and in the boundary layers and is relatively coarse in

other regions. A uniform ®ne mesh is used in the
regions 0R�R2 and 0RyR2 with a stretched mesh
in the remaining region both in the x- and y-directions.
H=X0 � L=X0 � 15 and Dxw � Dyw � 3� 10ÿ2 are

used, which results in 66 cells in the uniform mesh
region in both directions. The meshes beyond x � 2
and y � 2 expand at a rate of 7.6% up to x �
0:1�L=X0 ÿ 2� or y � 0:1�H=X0 ÿ 2�: Beyond x �
0:1�L=X0 ÿ 2� or y � 0:1�H=X0 ÿ 2�, the mesh size
expansion rate decreases at a rate of 10% until it

reaches zero, resulting in a constant coarse mesh in the
remaining region, giving 145� 145 volumes in the
computational domain shown in Fig. 1.

The equations are discretized on a non-staggered
mesh using ®nite volumes, with standard second-order
central di�erences used for the viscous, the pressure
gradient and divergence terms. The QUICK third-

order upwind scheme [20] is used for the advective
terms. The momentum and temperature equations are
solved using an ADI scheme. The second-order

Adams±Bashforth scheme and Crank±Nicholson
scheme are used for the time integration of the advec-
tive terms and the di�usive terms, respectively. To

enforce continuity, the pressure correction method is
used to construct a Poisson's equation which is solved
using the preconditioned GMRES method. Detailed
descriptions of these schemes can been found in [21±

23] and the code has been previously used for the
simulation of buoyancy dominated ¯ows [24±28].

2.3. Grid independence

Grid independence is tested by comparing the sol-
ution obtained on the basic mesh of 145� 145 volumes
de®ned above, with Dt � 5� 10ÿ4, with those

obtained on two additional ®ne meshes, with the fol-
lowing parameters. In the ®rst ®ne mesh, Dxw�Dyw�
1:5� 10ÿ2 but the grid expansion factor and the time

step �Dt � 5� 10ÿ4� are not changed, which gives a
mesh of 225� 225 volumes. In the second ®ne mesh,
Dxw�Dyw�1:25� 10ÿ2 and Dt � 0:25� 10ÿ4 but the

same grid expansion factor is still used, giving a mesh
of 257� 257 volumes. The variation between the three
solutions is very small, as can be seen in Fig. 2, indi-

cating that the basic mesh and time step are providing
su�cient resolution.

3. Evolution of transient fountain ¯ow

3.1. Qualitative observations

An overview of the time evolution of the ¯ow is
shown in Fig. 3, which presents temperature contours

for Fr � 1:0 with uniform pro®le. After initiation the
fountain grows until the momentum of the rising ¯uid
is balanced by the negative buoyancy, coming to rest

at an initial characteristic fountain height, ymi, ap-
proximately at t � 2:2: The rising ¯ow begins to
spread outwards immediately after discharge due to its

reduced velocity and interaction with the ambient
¯uid. After the fountain front reaches ymi the down-

Fig. 2. Comparison of the results from the 145� 145,

225� 225 and 257� 257 meshes: (a), (b) and (c), horizontal

pro®les of temperature and velocities at y � 0:0208; (d), (e)

and (f), vertical pro®les of temperature and velocities at

x � 0:0208 when t � 1:0, respectively.
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¯owing ¯uid interacts with the environment and with

the up¯ow, restricting the rise of further ¯uid and

reducing ymi to a smaller value, ymt, the temporary
characteristic fountain height. As the down¯ow ¯uid

always remains denser than the ambient in a homo-

geneous ambient, it spreads along the bottom ¯oor of
the container, forming an eddy in the region bounded

by the up¯ow, down¯ow and the ¯oor and an intru-

sion moving outwards along the ¯oor. This eddy in-
itially contains ambient ¯uid which is gradually

dissipated as the ¯ow develops. The fountain front

subsequently rises to a height ymf , which is a little
larger than ymi, at t � 15:5 and it stays at this height

thereafter. The up¯ow and down¯ow are steady and

the only unsteady ¯ow is the spreading of the intrusion
along the bottom ¯oor of the container, and ymf is the

®nal characteristic fountain height. This ¯ow evolution

is similar to that observed for weak axisymmetric foun-
tains [19] in which ymf is slightly smaller that ymi, and

for turbulent fountains [4,13,14,16] although there the
ratio of the initial to ®nal fountain height is 1.43,

much larger than for weak laminar fountains. Similar
¯ow patterns are also observed with weak laminar
plane fountains when the discharge velocity at the

source has the parabolic pro®le represented by Eq. (3).

3.2. Quantitative observations

3.2.1. Characteristic fountain heights
In the previous experimental studies on turbulent

fountains, the ®nal characteristic fountain height ymf is
usually used as the maximum fountain penetration

height. As the initial and temporary characteristic
fountain heights also describe the behaviour of the
fountains, especially for weak fountains where the

fountain heights are of the same order as the width of
the source, it is worthwhile to consider them too.
An explicit form of Eq. (1) for weak laminar plane

Fig. 3. A typical time evolution of the transient temperature contours for Fr � 1:0 with the uniform pro®le.
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fountains is obtained by plotting initial, temporary and
®nal height against Fr for 0:1RFrR1:0, as shown in

Fig. 4. Results are presented for both the uniform and
parabolic pro®les, and a linear ®t of the form

ym � a0 � a1Fr, �12�
has been obtained for each of the sets of data in the
range 0:2RFrR1:0, where ym represents ymi, ymt and
ymf respectively. The values of a0 and a1, obtained by

regression from the numerical results, are listed in
Table 1.
It is found that a weak plane fountain penetrates to

a greater height than a weak axisymmetric fountain,
for which ymf � 0:198� 1:165Fr for the uniform pro®le
and ymf � 0:105� 1:018Fr for the parabolic pro®le.

The linear ®t provides a good representation of the
data for 0:2RFrR1:0, with some departure for
Fr < 0:2, while for Fr tending to zero the linear ®t

does not tend to zero, which is clearly not physical.
This was also observed for weak axisymmetric foun-
tains.

When Fr > 1:0, the characteristic fountain heights of
laminar plane fountains increase more rapidly than is
predicted by Eq. (12), as was also observed for weak

axisymmetric fountains [19]. The fountain discharge
momentum at the source then dominates buoyancy
and the entrainment between the fountain and the sur-
rounding ambient ¯uid becomes important. Fountains

with Fr > 1 are regarded as strong fountains with
di�erent scaling relations and are beyond the scope of
this study.

3.2.2. Time scales for the fountain front
As shown in [19], dimensional consistency requires

that tm is scaled in terms of Fr as:

tm0Fr 2 �13�
The numerically simulated tm plotted against Fr 2

for 0:2RFrR1:0 are shown in Fig. 5, con®rming the

scaling which is well predicted by the following explicit
form:

tm � a0 � a1Fr
2, �14�

where the values of a0 and a1, which have been

obtained by regression from the numerical results, are
listed in Table 2.

Table 1

Regression results of Eq. (12) for both the uniform and para-

bolic pro®les

Pro®le ym a0 a1 R

uniform ymi 0.283220.0089 1.799220.0144 0.9997

ymt 0.289020.0094 1.735520.0152 0.9997

ymf 0.277420.0130 1.869620.0199 0.9996

parabolic ymi 0.183820.0147 1.554820.0235 0.9990

ymt 0.192720.0143 1.538220.0231 0.9990

ymf 0.201520.0096 1.669320.0148 0.9997

Table 2

Regression results of Eq. (14) for both the uniform and para-

bolic pro®les

Pro®le tm a0 a1 R

uniform tmi 1.02020.030 4.99220.056 0.9996

tmt 1.32620.037 7.70020.070 0.9997

tmf 1.60120.084 14.05920.159 0.9996

parabolic tmi 0.72720.043 3.32520.080 0.9977

tmt 0.97820.018 4.86420.033 0.9998

tmf 1.21120.032 9.92520.060 0.9998

Fig. 4. Initial, temporary and ®nal fountain heights plotted

against Fr with (a) the uniform pro®le and (b) the parabolic

pro®le.
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Compared to weak axisymmetric fountains for
which tmf � 0:669� 8:146Fr 2 for the uniform pro®le

and tmf � 0:305� 4:415Fr 2 for the parabolic pro®le,
plane fountains need a much longer time to reach the
®nal fountain height and thus to achieve steady state.

3.3. Fountain width

The fountain ¯ow is steady when t > tmf and a
characteristic fountain width can be determined for
each Fr. Fig. 6 presents the x distribution of v(x, y )

for both the uniform and parabolic pro®les for Fr �
1:0 at di�erent heights. At each height, v(x, y )
decreases gradually as x increases until at a speci®c x
where v(x, y ) becomes zero for each y, where the

up¯ow terminates and the down¯ow begins. v(x, y )
continues to reduce beyond this location until a clearly

de®ned minimum is reached, then increasing until it
again crosses the zero line. A clearly de®ned minimum

exists for the envelope of the minima, corresponding
to the y � 0:5ymf minimum, which occurs at x � 2:8
for Fr � 1:0 with the uniform pro®le. The minimum of

the envelope always corresponds to the y � 0:5ymf pro-
®le minimum and is clearly de®ned for all Fr con-
sidered. The horizontal length scale xw is de®ned to be

equal to this width, which characterizes the fountain
width at steady state. This de®nition of xw corre-
sponds very closely to the location of the fountain

boundary temperature contours at the origin of the
intrusion ¯ow at y � 0:5ymf : Obtaining a consistent
fountain width directly from the temperature contours
is di�cult owing to the smooth transformation from

fountain to intrusion, whereas the very well de®ned
minimum in the envelope of the minima of the vertical
velocity pro®les makes the procedure straightforward.

Based on dimensional considerations xw, like ym,

Fig. 6. Horizontal distribution of v(x, y ) at di�erent heights

for Fr � 1:0 with (a) the uniform pro®le and (b) the parabolic

pro®le.

Fig. 5. Times for the fountain front to reach the initial, tem-

porary and ®nal fountain heights plotted against Fr 2 with (a)

the uniform pro®le and (b) the parabolic pro®le.
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should be of the form xw0Fr: Fig. 7 presents xw

plotted against Fr for both the uniform and parabolic
pro®les with 0:2RFrR1:0: A linear relation clearly

exists between xw and Fr, that is,

xw � a0 � a1Fr, �15�
with the values of a0 and a1 listed in Table 3, together

with the regression coe�cients. Compared to weak axi-
symmetric fountains for which xw � 1:1228� 0:7308Fr
for the uniform pro®le and xw � 1:0468� 0:2525Fr for
the parabolic pro®le, plane fountains have consider-
ably larger horizontal length scales.
It is expected that these length scales can be used to

parameterize the core ¯ow, that is the region bounded

by x � xw and y � ymf , as they do for weak axisym-
metric fountains [19]. Further discussion of the core
region is presented in Section 4.

4. Steady ¯ow patterns in the fountain core

4.1. Vertical distribution

4.1.1. Vertical velocity

In [19], it was shown that the ®nal fountain height
provides the appropriate scaling for the vertical vel-
ocity in the vertical direction for a weak axisymmetric

fountain. Similarly, it is expected that ymf should also
provide the appropriate scaling for v(0, y ) in the y-
direction for weak laminar plane fountains, that is,

v�0, y� � f

�
y

ymf

�
: �16�

Fig. 8 presents results which show the relation between

Fig. 7. Fountain width xw plotted against Fr for

0:2RFrR1:0:

Table 3

Regression results of Eq. (15) for both the uniform and para-

bolic pro®les

Pro®le a0 a1 R

uniform 1.148520.0149 1.662520.0228 0.9993

parabolic 1.169220.0194 1.017720.0297 0.9968 Fig. 8. v�0, y� plotted against y=ymf for 0:2RFrR1:0 with (a)

the uniform pro®le (b) the parabolic pro®le.
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v(0, y ) and y=ymf for a series of Fr in the range
0:2RFrR1:0 for both the uniform and parabolic pro-

®les. All the data sets are collapsed onto a single curve
and it is therefore clear that ymf does provide the
appropriate length scale for the vertical velocity at the

symmetry line. A cubic was found to be the lowest
order polynomial to provide a good ®t to this relation,
with the following explicit form for the uniform pro-

®le:

v�0, y� � 1:0000ÿ 0:0152
�

y

ymf

�

ÿ 2:0239
�

y

ymf

� 2

�1:0349
�

y

ymf

�3

: �17�

and for the parabolic pro®le,

v�0, y� � 1:3693� 0:1053

�
y

ymf

�

ÿ 2:8146
�

y

ymf

� 2

�1:3499
�

y

ymf

�3

: �18�

Values of 0.9967 and 0.9972 were obtained for the re-

gression coe�cient squares for these empirical re-
lations.

4.1.2. Vertical temperature variation
As can be seen in Fig. 3 most of the temperature

variation at Pr � 7 occurs in a very thin layer which is

nearest to the fountain front. This indicates negligible
entrainment between the ambient ¯uid and the foun-
tain. Fig. 9, which shows y�0, y� plotted against y=ymf

for 0:2RFrR1:0, demonstrates that ymf is the appro-
priate length scale for y�0, y�, that is,

Fig. 10. Vertical distribution of (a) y�0, y� and (b) v�0, y� for
di�erent Pr when Fr � 1:0 with the parabolic pro®le.

Fig. 9. y�0, y� plotted against y=ymf for 0:2RFrR1:0 with (a)

the uniform pro®le (b) the parabolic pro®le.
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y�0, y� � f

�
y

ymf

�
: �19�

4.1.3. In¯uence of Pr
It is expected that a reduction in Pr will lead to a

thicker region over which the temperature varies at the

fountain front and when Pr becomes larger, the thick-
ness of the temperature variation will become smaller,
approaching zero as Pr41: Fig. 10 shows the tem-

perature and velocity variations on the symmetry line
for 0:7RPrR1000 at Fr � 1:0 with the parabolic pro-
®le. The variation in the temperature layer thickness is

clearly seen, whereas the in¯uence of Pr on the velocity
pro®le is very small.

4.2. Horizontal distribution

4.2.1. Zones of establishment and self-similarity

Fig. 6 which shows the horizontal distribution of
vertical velocity at a range of heights clari®es that the
fountain ¯ow is fully established for y=ymfr0:55 and a

zone of self-similarity exists for 0:55Ry=ymfR0:8: The
self-similarity collapses for y=ymfr0:8 until y=ymf �
1:0:

4.2.2. Horizontal distribution of vertical velocity in the

zone of self-similarity
As shown in [19] for weak laminar axisymmetric

fountains, the vertical velocity v(x, y ) should have a

height scale of ymf in the zone of self-similarity, while
the appropriate width scale is expected to be xw: It is

Fig. 11. v�x, y�=v�0, y� plotted against xy=ymf for (a) Fr � 0:3; (b) Fr � 0:5; (c) Fr � 0:7; and (d) Fr � 0:9 with the uniform pro®le:

ÐÐÐ, y=ymf � 0:6; � � �� � �, y=ymf � 0:65; ± ± ±, y=ymf � 0:7; ± � ±, y=ymf � 0:75; r, 5th degree-®t.
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therefore expected that a relation will exist between
v�x, y�=v�0, y�, x=xw and y=ymf , that is,

v�x, y�
v�0, y� � f

�
x

xw

,
y

ymf

�
: �20�

Numerical simulations have been conducted for a
series of Fr to provide an explicit form for Eq. (20).
v�x, y�=v�0, y� is plotted against xy=ymf for several

y=ymf and Fr with the uniform pro®le in Fig. 11 to
determine the relation between v�x, y�=v�0, y� and
y=ymf : Each set of results is collapsed onto a single

curve by y=ymf scaling and a 5th degree polynomial is
the lowest order polynomial which provides a good ®t
for that data. v�x, y�=v�0, y� is plotted against x=xw at

®xed y=ymf for a range of Fr in Fig. 12, which shows
that the xw scaling collapses the Fr variation in v(x, y )

onto a single curve at each y, which is well represented
by a cubic ®t.

Similar results are also obtained for the parabolic
pro®le. Therefore, a general correlation should exist
between v�x, y�=v�0, y� and �x=xw��y=ymf�: Fig. 13 con-

tains v�x, y�=v�0, y� plotted against �x=xw��y=ymf � for a
range of Fr and ymf values for both the uniform and
parabolic pro®les. All the results are collapsed close to

single curves by the ymf and xw scalings, and are well
represented by cubic ®ts of the form:

v�r, z�
v�0, z� � 0:992� 1:216

�
x

xw

y

ymf

�

ÿ 12:54
�

x

xw

y

ymf

� 2

�7:937
�

x

xw

y

ymf

�3

, �21�

for the uniform pro®le and

Fig. 12. v�x, y�=v�0, y� plotted against x=xw for (a) y=ymf � 0:6; (b) y=ymf � 0:65; (c) y=ymf � 0:7; and (d) y=ymf � 0:75 with the uni-

form pro®le: ÐÐÐ, Fr � 0:3; � � �� � �, Fr � 0:5; ± ± ±, Fr � 0:7; ± � ±, Fr � 0:9; r, cubic-®t.
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v�r, z�
v�0, z� � 0:993� 0:624

�
x

xw

y

ymf

�

ÿ 16:26
�

x

xw

y

ymf

� 2

�14:894
�

x

xw

y

ymf

�3

, �22�

for the parabolic pro®le. The square of the regression
coe�cients of these two correlations are 0.9956 and
0.9947 respectively.

4.2.3. Horizontal distribution of horizontal velocity in
the self-similar zone
The horizontal velocity has a maximum value,um�y�,

at each height, and it is expected that in the zone of
self-similarity u�x, y�=um�y� will be scaled by xw and
ymf : This is shown in Fig. 14 where u�x, y�=um�y� is

plotted against x=xwy=ymf for a range of Fr with the

uniform pro®le. All the results are collapsed close to a
single curve in the region of the fountain core for each
of the data sets for the uniform pro®le, indicating that

xw and ymf do provide a good parameterisation. Simi-
lar results were also obtained for the parabolic pro®le.

5. Conclusions

Weak laminar plane fountains discharged upwards
into a homogeneous environment were investigated fol-
lowing the same procedure as used in a previous nu-

merical study of weak axisymmetric fountains. The
behaviour of weak laminar plane fountains with both
uniform and parabolic discharge velocity pro®les at
the source was investigated.

A qualitative observation has been made with visual-
isation of a typical time evolution of the transient tem-
perature contours of a weak laminar plane fountain

with Fr � 1:0 and the uniform pro®le. An initial
unsteady growth stage and a ®nal steady state have
been identi®ed with distinct ¯ow behaviours.

Using dimensional and numerical results explicit cor-
relations were obtained for the initial, temporary and
®nal characteristic fountain heights, in terms of Fr.

Fig. 13. v�x, y�=v�0, y� plotted against �x=xw��y=ymf � with (a)

the uniform pro®le and (b) the parabolic pro®le: ÐÐÐ,

Fr � 0:3 and y=ymf � 0:6; � � �� � �, Fr � 0:5 and y=ymf � 0:65;
± ± ±, Fr � 0:7 and y=ymf � 0:7; ± � ±, Fr � 0:9 and

y=ymf � 0:75; r, cubic-®t.

Fig. 14. u�x, y�=um�y� plotted against �x=xw��y=mf � with the

uniform pro®le: ÐÐÐ, Fr � 0:3 and y=ymf � 0:6; � � �� � �,
Fr � 0:5 and y=ymf � 0:65; ± ± ±, Fr � 0:7 and y=ymf � 0:7;
± � ±, Fr � 0:9 and y=ymf � 0:75:
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These results show that Fr is the appropriate control

parameter, con®rming the dimensional analysis. It has

also been shown that the time scale for the develop-

ment of the fountain ¯ow is a quadratic function of

the Froude number and the Fr relation for the achieve-

ment of steady state has been obtained. This is the

same behaviour as that observed with weak axisym-

metric fountains, however the exact form of the re-

lation is di�erent with the weak plane fountains

achieving a ymf approximately 55% greater than the

axisymmetric fountains. Additionally for the axisym-

metric fountains ymf < ymi whereas for the plane foun-

tains ymf > ymi:

A horizontal length scale, xw, has been obtained

characterising the fountain width and has been shown

to be linearly dependent on Fr, again con®rming the

dimensional arguments. The vertical velocity on the

symmetry line has been shown to scale with the foun-

tain height, ymf : Both the vertical and horizontal vel-

ocities in the fountain core in the region 0:55RyR0:8
are completely parameterized by ymf and xw, showing

that in this region the ¯ow is self similar. Below the

region of self similarity is a zone of establishment,

while above the region the self similarity gradually col-

lapses. Compared to axisymmetric fountains, plane

fountains have a 52% greater width.

Results presented in this paper were all obtained

with Re � 200, however additional results have been

obtained with 200RReR800to determine any Re

dependency. It was found that there was very little Re

variation in the results indicating that weak laminar

plane fountain ¯ow in this range of Re is governed by

a balance between buoyancy and advection as pre-

dicted by the dimensional analysis, which again indi-

cates that Fr is the appropriate control parameter.

The concluding remark from this study is that the

behaviour of weak laminar plane fountains is similar

to that of weak laminar axisymmetric fountains,

although there are quantitative di�erences between

them.
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